Fecha: 24 de febrero a las 2 pm de México (GMT-6).
Por favor llena este formato para que te enviemos el link de Zoom para asistir a las charlas.
Sarai Hernández Torres. Es becaria postdoctoral en el Technion – Instituto Tecnológico de Israel. Estudió la licenciatura en matemáticas en la Universidad de Guanajuato del 2009 al 2014 y su tesis fue dirigida por Fernando Galaz Fontes. Continuó sus estudios en The University of British Columbia, en Canadá, donde obtuvo el doctorado en el 2020 bajo la dirección de Omer Angel y Martin Barlow. Su investigación se concentra en propiedades emergentes de procesos estocásticos definidos sobre estructuras discretas. Entre los objetos que estudia se encuentran las caminatas aleatorias, los árboles aleatorios y sistemas de partículas interactivas.
Titulo. Atrápame si puedes: un sistema de partículas interactivas
Resumen. Un sistema de partículas interactivas es un proceso estocástico definido sobre una gráfica. Sobre esta gráfica se encuentran partículas con interacciones aleatorias que generan una evolución temporal del proceso. Estos sistemas proveen modelos simples para fenómenos en física, biología, sociología y ciencias de la computación.
En esta charla presentaremos un sistema de partículas interactivas llamado “chase-escape with death”. Este modelo imita el movimiento de un conjunto de depredadores persiguiendo a sus presas, pero donde éstas últimas también pueden morir por causas externas. Veremos cómo la combinatoria analítica nos permite entender las transiciones de fase de este modelo cuando se define sobre un árbol d-ario. Esta charla está basada en un trabajo en colaboración con Erin Beckman, Keisha Cook, Nicole Eikmeier y Matthew Junge.
Eduardo Duéñez Guzmán. Sus estudios de licenciatura en FAMAT fueron de 1992 a 1996, seguidos por estudios de doctorado en matemáticas (Universidad de Princeton en 2001, supervisado por Peter Sarnak), y estancias postdoctorales (American Institute of Mathematics y Johns Hopkins U.) En 2004 se unió al profesorado de la Universidad de Texas en San Antonio. Surgido de las fuerzas básicas de la Olimpíada Mexicana de Matemáticas (Jalisco), ha continuado trabajando con estudiantes de educación media y superior apasionados por las competencias académicas (Olympiadas AAAS, American Mathematics Competition, y el examen Putnam). De 2015 a 2019, fue editor asociado de Mathematics Magazine y editor en jefe de su sección de Problemas y Soluciones. Ha trabajado en las áreas de matrices aleatorias, teoría de números analítica, y lógica continua con aplicaciones en análisis y teoría ergódica.
Titulo. Análisis y Teoría de Modelos Continua
Resumen. Todo matemático(a), bien sea investigador en esa área específica o no, necesariamente tiene familiaridad con el sabor particular de los conceptos y herramientas del análisis. Por contraste, no se puede asumir la misma familiaridad con la teoría de modelos, que es una subárea de la lógica matemática cuyo tema de estudio son las estructuras que satisfacen (“modelan”) una teoría dada (pero por demás arbitraria). El objetivo de esta charla es tratar de transmitir, vía ejemplos y teoremas, una visión (un tanto personal) del análisis matemático desde la perspectiva de teoría de modelos continua. Las preguntas que tratamos incluyen las siguientes:
– ¿Hay teoremas propiamente de análisis que son formulables sólo con ayuda de la lógica?
– ¿Qué objetos de análisis admiten construcciones explícitas, y cuáles no?
– ¿Por qué los teoremas de convergencia uniforme son tan escasos?
Mis colaboradores en los proyectos de esta plática son Xavier Caicedo-Ferrer (Universidad de los Andes, Colombia), Peter Casazza (Universidad de Missouri), y José Iovino (U. Texas, San Antonio).